42 research outputs found

    Photon super-bunching from a generic tunnel junction

    Full text link
    Generating correlated photon pairs at the nanoscale is a prerequisite to creating highly integrated optoelectronic circuits that perform quantum computing tasks based on heralded single-photons. Here we demonstrate fulfilling this requirement with a generic tip-surface metal junction. When the junction is luminescing under DC bias, inelastic tunneling events of single electrons produce a photon stream in the visible spectrum whose super-bunching index is 17 when measured with a 53 picosecond instrumental resolution limit. These photon bunches contain true photon pairs of plasmonic origin, distinct from accidental photon coincidences. The effect is electrically rather than optically driven - completely absent are pulsed lasers, down-conversions, and four-wave mixing schemes. This discovery has immediate and profound implications for quantum optics and cryptography, notwithstanding its fundamental importance to basic science and its ushering in of heralded photon experiments on the nanometer scale

    Single charge and exciton dynamics probed by molecular-scale-induced electroluminescence

    Full text link
    Excitons and their constituent charge carriers play the central role in electroluminescence mechanisms determining the ultimate performance of organic optoelectronic devices. The involved processes and their dynamics are often studied with time-resolved techniques limited by spatial averaging that obscures the properties of individual electron-hole pairs. Here we overcome this limit and characterize single charge and exciton dynamics at the nanoscale by using time-resolved scanning tunnelling microscopy-induced luminescence (TR-STML) stimulated with nanosecond voltage pulses. We use isolated defects in C60_{60} thin films as a model system into which we inject single charges and investigate the formation dynamics of a single exciton. Tuneable hole and electron injection rates are obtained from a kinetic model that reproduces the measured electroluminescent transients. These findings demonstrate that TR-STML can track dynamics at the quantum limit of single charge injection and can be extended to other systems and materials important for nanophotonic devices

    Character of electronic states in the transport gap of molecules on surfaces

    Full text link
    We report on scanning tunneling microscopy (STM) topographs of individual metal phthalocyanines (MPc) on a thin salt (NaCl) film on a gold substrate, at tunneling energies within the molecule's electronic transport gap. Theoretical models of increasing complexity are discussed. The calculations for MPcs adsorbed on a thin NaCl layer on Au(111) demonstrate that the STM pattern rotates with the molecule's orientations - in excellent agreement with the experimental data. Thus, even the STM topography obtained for energies in the transport gap represent the structure of a one atom thick molecule. It is shown that the electronic states inside the transport gap can be rather accurately approximated by linear combinations of bound molecular orbitals (MOs). The gap states include not only the frontier orbitals but also surprisingly large contributions from energetically much lower MOs. These results will be essential for understanding processes, such as exciton creation, which can be induced by electrons tunneling through the transport gap of a molecule

    Growth and surface alloying of Fe on Pt(997)

    Full text link
    The growth of ultra-thin layers of Fe on the vicinal Pt(997) surface is studied by thermal energy He atom scattering (TEAS) and Auger electron spectroscopy (AES) in the temperature range between 175K and 800K. We find three distinct regimes of qualitatively different growth type: Below 450K the formation of a smooth first monolayer, at and above 600K the onset of bulk alloy formation, and at intermediate temperature 500K - 550K the formation of a surface alloy. Monatomic Fe rows are observed to decorate the substrate steps between 175K and 500K. The importance of the high step density is discussed with respect to the promotion of smooth layer growth and with respect to the alloying process and its kinetics

    Anionic Character of the Conduction Band of Sodium Chloride

    Full text link
    The alkali halides are ionic compounds. Each alkali atom donates an electron to a halogen atom, leading to ions with full shells. The valence band is mainly located on halogen atoms, while, in a traditional picture, the conduction band is mainly located on alkali atoms. Scanning tunnelling microscopy of NaCl at 4 K actually shows that the conduction band is located on Cl^- because the strong Madelung potential reverses the order of the Na+^+ 3s and Cl^- 4s levels. We verify this reversal is true for both atomically thin and bulk NaCl, and discuss implications for II-VI and I-VII compounds

    Top-layer superstructures of the reconstructed Pt(100) surface

    Get PDF
    The structures of the two reconstructed phases of the Pt(100) surface have been studied by high-resolution helium diffraction. In contrast to earlier investigations, we show that for both phases the superstructure in the approximate 〈011〉 direction is not fivefold but much larger. The mean distance between atom rows in the top layer, however, is very close to that of a fivefold superstructure. This supports the description of the surface layer in a model which assumes static oscillations about a flat and equidistant atom arrangement. The results are discussed in comparison with low-energy electron diffraction, scanning-tunneling-microscopy, and x-ray-diffraction results

    Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces

    No full text
    The conversion of electric power to light is an important scientific and technological challenge. Advanced experimental methods have provided access to explore the relevant microscopic processes at the nanometer scale. Here, we review state-of-the-art studies of electroluminescence induced on the molecular scale by scanning tunneling microscopy. We discuss the generation of excited electronic states and electron hole pairs (excitons) at molecular interfaces and address interactions between electronic states, local electromagnetic fields (tip-induced plasmons), and molecular vibrations. The combination of electronic and optical spectroscopies with atomic-scale spatial resolution is able to provide a comprehensive picture of energy conversion at the molecular level. A recently developed aspect is the characterization of electroluminescence emitters as quantum light sources, which can be studied with high time resolution, thus providing access to picosecond dynamics at the atomic scale

    Electroluminescence properties of organic nanostructures studied by scanning tunnelling microscopy

    No full text
    The control of light emission on the scale of individual quantum systems, like molecules or quantum dots, is a field of intense current research. One way to induce light emission from these systems is the local charge injection through the tip of a scanning tunnelling microscope (STM). Studies which employ this method have to address one basic question: Does the detected luminescence provide information precisely from the molecule into which charge is injected by the STM tip apex or are the luminescence properties determined by a larger volume? In this article, we focus on the investigation of organic nanocrystals and discuss the relation between the local excitation, the intermolecular coupling and the influence of the STM as a measuring instrument. Choosing pentacene as an organic emitter, we present results, which suggest that the STM-induced luminescence cannot be attributed simply to the emission by a single molecule. We discuss how information about locality can be obtained and comment on the present experimental limitations and possible future improvements
    corecore